Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.813
Filtrar
1.
Sci Prog ; 107(2): 368504241239444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38614462

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) poses a significant challenge for physicians, necessitating the management of cell damage and the preservation of organ functions. Various surgical procedures, such as vascular surgery on extremities, temporary cross-clamping of the abdominal aorta in aortic surgery, and the use of a tourniquet in extremity surgeries, may induce lower limb IRI. The susceptibility to IRI is heightened in individuals with diabetes. This study aimed to investigate the effects of fullerenol C60 and sevoflurane on mouse muscle tissue in a lower limb IRI model and to assess their potential in preventing complications arising from ischemia-reperfusion in mice with streptozocin-induced diabetes. METHODS: A total of 36 adult Swiss albino mice were randomly divided into six groups, each consisting of six mice: control group (group C), diabetes group (group D), diabetes-ischemia/reperfusion group (group DIR), diabetes-ischemia/reperfusion-fullerenol C60 group (group DIR-FC60), diabetes-ischemia/reperfusion-sevoflurane group (group DIR-S), and diabetes-ischemia/reperfusion-sevoflurane-fullerenol C60 group (DIR-S-FC60). Streptozocin (55 mg/kg) was intraperitoneally administered to induce diabetes in the relevant groups, with mice displaying blood glucose levels of 250 mg/dL or higher at 72 h were considered diabetic. After 4 weeks, all groups underwent laparotomy under anesthesia. In DIR-FC60 and DIR-S-FC60 groups, fullerenol C60 (100 mg/kg) was intraperitoneally administrated 30 min before the ischemia period. Sevoflurane, delivered in 100% oxygen at a rate of 2.3% and 4 L/min, was administered during the ischemia period in DIR-S and DIR-S-FC60 groups. In the IR groups, a microvascular clamp was placed on the infrarenal abdominal aorta for 120 min during the ischemia period, followed by the removal of the clamp and a 120-min reperfusion period. At the end of the reperfusion, gastrocnemius muscle tissues were removed for histopathological and biochemical parameter examinations. RESULTS: Histopathological examination revealed a significant reduction in the disorganization and degeneration of muscle cells in the DIR-S-FC60 group compared to the DIR group (p = 0.041). Inflammatory cell infiltration was notably lower in the DIR-S, DIR-FC60, and DIR-S-FC60 groups than in the DIR group (p = 0.031, p = 0.011, and p = 0.013, respectively). The total damage scores in the DIR-FC60 and DIR-S-FC60 groups were significantly lower than in the DIR group (p = 0.018 and p = 0.008, respectively). Furthermore, the levels of malondialdehyde (MDA) in the DIR-S, DIR-FC60, and DIR-S-FC60 groups were significantly lower than in the DIR group (p < 0.001, p < 0.001, and p < 0.001, respectively). Catalase (CAT) enzyme activity in the DIR-S, DIR-FC60, and DIR-S-FC60 groups was higher than in the DIR group (p = 0.001, p = 0.014, and p < 0.001, respectively). Superoxide dismutase (SOD) enzyme activity in the DIR-FC60 and DIR-S-FC60 groups was also higher than in the DIR group (p < 0.001 and p = 0.001, respectively). CONCLUSION: Our findings indicate that administering fullerenol C60 30 min prior to ischemia in diabetic mice, in combination with sevoflurane, led to a reduction in oxidative stress and the correction of IR-related damage in muscle tissue histopathology. We believe that the administration of fullerenol C60 before IR, coupled with sevoflurane administration during IR, exerts a protective effect in mice.


Assuntos
Diabetes Mellitus Experimental , Fulerenos , Traumatismo por Reperfusão , Animais , Camundongos , Sevoflurano , Estreptozocina , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Isquemia , Traumatismo por Reperfusão/tratamento farmacológico , Extremidade Inferior
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 989-999, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621906

RESUMO

This study aims to investigate the effect of Naotaifang(NTF) on the proteins associated with microglial polarization and glial scar in the rat model of cerebral ischemia reperfusion injury(CIRI). The CIRI model was established by middle cerebral artery occlusion/reperfusion. The 48 successfully modeled rats were randomized into model 7 d, model 14 d, NTF 7 d, and NTF 14 d groups(n=12). In addition, 12 SD rats were selected as the sham group. The NTF group was administrated with NTF suspension at 27 g·kg~(-1)·d~(-1) by gavage, and the sham, model 7 d, and model 14 d groups were administrated with the same volume of normal saline every day by gavage for 7 and 14 days, respectively. After the intervention, Longa score was evaluated. The infarct volume was measured by 2,3,5-triphenyl-2H-tetrazolium chloride(TTC) staining. Morris water maze and open field tests were carried out to evaluate the spatial learning, memory, cognitive function, and anxiety degree of rats. Hematoxylin-eosin(HE) staining was employed to observe the morphological structure and damage of the brain tissue. The immunofluorescence assay was employed to measure the expression of glial fibrillary acidic protein(GFAP) and glial scar. Western blot was employed to determine the protein levels of GFAP, neurocan, phosphacan, CD206, arginase-1(Arg-1), interleukin(IL)-1ß, IL-6, and IL-4. Compared with the sham, model 7 d and model 14 d groups showed cerebral infarction of different degrees, severe pathological injury of cerebral cortex and hippocampus, neurological impairment, reduced spatial learning and memory, cognitive dysfunction, severe anxiety, astrocyte hyperplasia, thickening penumbra glial scar, and up-regulated protein levels of IL-1ß, IL-6, GFAP, neurocan, phosphacan, CD206, and Arg-1(P<0.01). Compared with the model group, NTF 7 d and NTF 14 d groups improved spatial learning, memory, and cognitive function, reduced anxiety, improved nerve function, reduced cerebral infarction volume, reduced astrocyte hyperplasia, thinned penumbra glial scar, down-regulated the protein levels of GFAP, neurocan, phosphacan, IL-6, and IL-1ß, and up-regulated the protein levels of IL-4, CD206, and Arg-1(P<0.05 or P<0.01). NTF exerts a neuroprotective effect on CIRI by inducing the M2 polarization of microglia, inhibiting inflammatory response, and reducing the formation of glial scar.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Ratos , Animais , Microglia/metabolismo , Gliose/patologia , Ratos Sprague-Dawley , Hiperplasia , Interleucina-4 , Interleucina-6 , Neurocam , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Infarto da Artéria Cerebral Média , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
3.
Sci Rep ; 14(1): 7747, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565569

RESUMO

6-Gingerol, the main bioactive compound of ginger, has antioxidant, anti-inflammatory, anti-cancer and neuroprotective effects. However, it is unclear whether 6-Gingerol has protective effects against hepatic ischemia/reperfusion (I/R) injury. In this study, the mouse liver I/R injury model and the mouse AML12 cell hypoxia/reoxygenation (H/R) model were established by pretreatment with 6-Gingerol at different concentrations to explore the potential effects of 6-Gingerol. Serum transaminase levels, liver necrotic area, cell viability, inflammatory response, and cell apoptosis were used to assess the effect of 6-Gingerol on hepatic I/R or cell H/R injury. Quantitative polymerase chain reaction (qPCR) and Western blotting were used to detect the mRNA and protein expression. The results show that 6-Gingerol decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels, liver necrosis, inflammatory cytokines IL-1ß, IL-6, MCP-1, TNF-α expression, Ly6g+ inflammatory cell infiltration, protein phosphorylation of NF-κB signaling pathway, Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) positive cells, cell apoptosis rate, the protein expression of pro-apoptotic protein BAX and C-Caspase3, increased cell viability, and expression of anti-apoptotic protein BCL-2. Moreover, 6-Gingerol could increase the mRNA and protein expression of mitogen activated protein kinase phosphatase 5 (MKP5) and inhibit the activation of P38/JNK signaling pathway. In MKP5 knockout (KO) mice, the protective effect of 6-gingerol and the inhibition of P38/JNK pathway were significantly weakened. Therefore, our results suggest that 6-Gingerol exerts anti-inflammatory and anti-apoptotic effects to attenuate hepatic I/R injury by regulating the MKP5-mediated P38/JNK signaling pathway.


Assuntos
Catecóis , Álcoois Graxos , Sistema de Sinalização das MAP Quinases , Traumatismo por Reperfusão , Camundongos , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Fígado , Isquemia , Anti-Inflamatórios/farmacologia , Proteínas Reguladoras de Apoptose/farmacologia , Apoptose , RNA Mensageiro/farmacologia
4.
Eur Rev Med Pharmacol Sci ; 28(6): 2501-2508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567610

RESUMO

OBJECTIVE: This study aimed to analyze the histopathological and biochemical effects of dexmedetomidine on the rat uteri exposed to experimental ischemia-reperfusion injury. MATERIALS AND METHODS: Twenty-four female rats were randomly divided into three groups. Group 1 was defined as the control group. An experimental uterine ischemia-reperfusion model was created in Group 2. Group 3 was assigned as the treatment group. Similar uterine ischemia-reperfusion models were created for the rats in Group 3, and then, unlike the other groups, 100 µg/kg of dexmedetomidine was administered intraperitoneally immediately after the onset of reperfusion. In blood biochemical analysis, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA), interleukin 1beta (IL-1ß), interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels were measured. In the histopathological analyses, endometrial epithelial glandular changes (leukocytosis, cell degeneration) and endometrial stromal changes (congestion, edema) were analyzed using the tissue damage scoring system. RESULTS: It was observed that IL-1ß, IL-6, and TNF-α levels were significantly suppressed in Group 3 compared to Group 2 (p=0.001, p<0.001 and p=0.001, respectively). MDA level was noted as the highest in Group 2. The MDA value in Group 3 was measured at 5.37±0.82, which was significantly decreased compared to Group 2 (p<0.001). An increase in antioxidant enzyme activities (SOD and GSH-PX) was observed in Group 3 compared to Group 2 (p=0.001 and p=0.006, respectively). In our histopathological analysis, a significant improvement in endometrial epithelial glandular and endometrial stromal changes was revealed in Group 3 compared to Group 2 (p<0.001). CONCLUSIONS: In our study, it has been documented that dexmedetomidine protects the uterine tissue against ischemia-reperfusion injury.


Assuntos
Dexmedetomidina , Traumatismo por Reperfusão , Ratos , Feminino , Animais , Dexmedetomidina/farmacologia , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa , Interleucina-6 , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Antioxidantes/farmacologia , Isquemia , Útero , Superóxido Dismutase , Malondialdeído/análise
5.
PeerJ ; 12: e17123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560469

RESUMO

Background: The purpose of the present study was to investigate the effect of erythropoietin (EPO) on lung ischemia-reperfusion injury (LIRI). Methods: Sprague Dawley rats and BEAS-2B cells were employed to construct an ischemia-reperfusion (I/R)-induced model in vivo and in vitro, respectively. Afterward, I/R rats and tert-butyl hydroperoxide (TBHP)-induced cells were treated with different concentrations of EPO. Furthermore, 40 patients with LIRI and healthy controls were enrolled in the study. Results: It was observed that lung tissue damage, cell apoptosis and the expression of BAX and caspase-3 were higher in the LIRI model in vivo and in vitro than in the control group, nevertheless, the Bcl-2, FGF23 and FGFR4 expression level was lower than in the control group. EPO administration significantly reduced lung tissue damage and cell apoptosis while also up-regulating the expression of FGF23 and FGFR4. Rescue experiments indicated that EPO exerted a protective role associated with the FGF23/FGFR4/p-ERK1/2 signal pathway. Notably, the expression of serum EPO, FGF23, FGFR4 and Bcl-2 was decreased in patients with LIRI, while the expression of caspase-3 and BAX was higher. Conclusion: EPO could effectively improve LIRI, which might be related to the activation of the FGF23/FGFR4/p-ERK1/2 signaling pathway.


Assuntos
Eritropoetina , Traumatismo por Reperfusão , Animais , Humanos , Ratos , Proteína X Associada a bcl-2/metabolismo , Caspase 3/genética , Epoetina alfa/metabolismo , Eritropoetina/farmacologia , Isquemia , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais
6.
J Toxicol Environ Health A ; 87(10): 448-456, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557302

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.


Assuntos
Isquemia Encefálica , Cistanche , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fosfatidilinositol 3-Quinases/farmacologia , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Fator 2 Relacionado a NF-E2/farmacologia , Apoptose , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Fármacos Neuroprotetores/farmacologia
7.
Clin Transl Med ; 14(3): e1631, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38504554

RESUMO

BACKGROUND: Cold ischemia-reperfusion injury (IRI) is an unavoidable complication of kidney transplantation. We investigated the role of regulatory T cells (Treg) in cold IRI and whether the interleukin (IL)-2/anti-IL-2 antibody complex (IL-2C) can ameliorate cold IRI. METHODS: We developed a cold IRI mouse model using kidney transplantation and analyzed the IL-2C impact on cold IRI in acute, subacute and chronic phases. RESULTS: Treg transfer attenuated cold IRI, while Treg depletion aggravated cold IRI. Next, IL-2C administration prior to IRI mitigated acute renal function decline, renal tissue damage and apoptosis and inhibited infiltration of effector cells into kidneys and pro-inflammatory cytokine expression on day 1 after IRI. On day 7 after IRI, IL-2C promoted renal regeneration and reduced subacute renal damage. Furthermore, on day 28 following IRI, IL-2C inhibited chronic fibrosis. IL-2C decreased reactive oxygen species-mediated injury and improved antioxidant function. When IL-2C was administered following IRI, it also increased renal regeneration with Treg infiltration and suppressed renal fibrosis. In contrast, Treg depletion in the presence of IL-2C eliminated the positive effects of IL-2C on IRI. CONCLUSION: Tregs protect kidneys from cold IRI and IL-2C inhibited cold IRI by increasing the renal Tregs, suggesting a potential of IL-2C in treating cold IRI. KEY POINTS: Interleukin (IL)-2/anti-IL-2 antibody complex attenuated acute renal injury, facilitated subacute renal regeneration and suppressed chronic renal fibrosis after cold ischemia-reperfusion injury (IRI) by increasing the renal Tregs. IL-2/anti-IL-2 antibody complex decreased reactive oxygen species-mediated injury and improved antioxidant function. This study suggests the therapeutic potential of the IL-2/anti-IL-2 antibody complex in kidney transplantation-associated cold IR.


Assuntos
Injúria Renal Aguda , Transplante de Rim , Traumatismo por Reperfusão , Animais , Camundongos , Interleucina-2/metabolismo , Linfócitos T Reguladores , Complexo Antígeno-Anticorpo , Transplante de Rim/efeitos adversos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rim , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Fibrose
8.
Mediators Inflamm ; 2024: 7459054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549714

RESUMO

Background: Cerebral ischemia-reperfusion injury is a common complication of ischemic stroke that affects the prognosis of patients with ischemic stroke. The lipid-soluble diterpene Tanshinone IIA, which was isolated from Salvia miltiorrhiza, has been indicated to reduce cerebral ischemic injury. In this study, we investigated the molecular mechanism of Tanshinone IIA in alleviating reperfusion-induced brain injury. Methods: Middle cerebral artery occlusion animal models were established, and neurological scores, tetrazolium chloride staining, brain volume quantification, wet and dry brain water content measurement, Nissl staining, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were performed. The viability of cells was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assays, while cell damage was measured by lactate dehydrogenase release in the in vitro oxygen glucose deprivation model. In addition, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were used to evaluate the therapeutic effect of Tanshinone IIA on ischemia/reperfusion (I/R) induced brain injury, as well as its effects on the inflammatory response and neuronal apoptosis, in vivo and in vitro. Furthermore, this study validated the targeting relationship between miR-124-5p and FoxO1 using a dual luciferase assay. Finally, we examined the role of Tanshinone IIA in brain injury from a molecular perspective by inhibiting miR-124-5p or increasing FoxO1 levels. Results: After treatment with Tanshinone IIA in middle cerebral artery occlusion-reperfusion (MCAO/R) rats, the volume of cerebral infarction was reduced, the water content of the brain was decreased, the nerve function of the rats was significantly improved, and the cell damage was significantly reduced. In addition, Tanshinone IIA effectively inhibited the I/R-induced inflammatory response and neuronal apoptosis, that is, it inhibited the expression of inflammatory cytokines IL-1ß, IL-6, TNF-α, decreased the expression of apoptotic protein Bax and Cleaved-caspase-3, and promoted the expression of antiapoptotic protein Bcl-2. In vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, Tanshinone IIA also inhibited the expression of inflammatory factors in neuronal cells and inhibited the occurrence of neuronal apoptosis. In addition, Tanshinone IIA promoted the expression of miR-124-5p. Transfection of miR-124-5p mimic has the same therapeutic effect as Tanshinone IIA and positive therapeutic effect on OGD cells, while transfection of miR-124-5p inhibitor has the opposite effect. The targeting of miR-124-5p negatively regulates FoxO1 expression. Inhibition of miR-124-5p or overexpression of FoxO1 can weaken the inhibitory effect of Tanshinone IIA on brain injury induced by I/R, while inhibition of miR-124-5p and overexpression of FoxO1 can further weaken the effect of Tanshinone IIA. Conclusion: Tanshinone IIA alleviates ischemic-reperfusion brain injury by inhibiting neuroinflammation through the miR-124-5p/FoxO1 axis. This finding provides a theoretical basis for mechanistic research on cerebral ischemia-reperfusion injury.


Assuntos
Abietanos , Lesões Encefálicas Traumáticas , Isquemia Encefálica , AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , MicroRNAs/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/complicações , Oxigênio/metabolismo , Reperfusão/efeitos adversos , Glucose/metabolismo , Água , Apoptose
9.
Biochem Biophys Res Commun ; 709: 149709, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38554603

RESUMO

Ischemia-reperfusion (I/R) leads to tissue damage in transplanted kidneys, resulting in acute kidney injury (AKI) and chronic graft dysfunction, which critically compromises transplant outcomes, such as graft loss. Linaclotide, a guanylate cyclase C agonist clinically approved as a laxative, has recently been identified to exhibit renoprotective effects in a chronic kidney disease (CKD) model. This study evaluates the therapeutic effects of linaclotide on AKI triggered by I/R in a rat model with an initial comparison with other laxatives. Here, we show that linaclotide administration resulted in substantial reduction in serum creatinine levels, reflective of enhanced renal function. Histological examination revealed diminished tubular damage, and Sirius Red staining confirmed less collagen deposition, collectively indicating preserved structural integrity and mitigation of fibrosis. Further analysis demonstrated lowered expression of TGF-ß and associated fibrotic markers, α-SMA, MMP2, and TIMP1, implicating the downregulation of the fibrogenic TGF-ß pathway by linaclotide. Furthermore, one day after I/R insult, linaclotide profoundly diminished macrophage infiltration and suppressed critical pro-inflammatory cytokines such as TNF, IL-1ß, and IL-6, signifying its potential to disrupt initial inflammatory mechanisms integral to AKI pathology. These findings suggest that linaclotide, with its established safety profile, could extend its benefits beyond gastrointestinal issues and potentially serve as a therapeutic intervention for organ transplantation. Additionally, it could provide immediate and practical insights into selecting laxatives for managing patients with AKI or CKD, regardless of the cause, and for those receiving dialysis or transplant therapy.


Assuntos
Injúria Renal Aguda , Peptídeos , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Laxantes/metabolismo , Laxantes/farmacologia , Laxantes/uso terapêutico , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Rim/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Insuficiência Renal Crônica/patologia , Isquemia/patologia , Reperfusão , Fator de Crescimento Transformador beta/metabolismo , Fibrose
10.
Int J Biol Sci ; 20(5): 1547-1562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481808

RESUMO

Renal ischemia-reperfusion injury (IRI) leads to endoplasmic reticulum (ER) stress, thereby initiating the unfolded protein response (UPR). When sustained, this response may trigger the inflammation and tubular cell death that acts to aggravate the damage. Here, we show that knockdown of the BET epigenetic reader BRD4 reduces the expression of ATF4 and XBP1 transcription factors under ER stress activation. BRD4 is recruited to the promoter of these highly acetylated genes, initiating gene transcription. Administration of the BET protein inhibitor, JQ1, one hour after renal damage induced by bilateral IRI, reveals reduced expression of ATF4 and XBP1 genes, low KIM-1 and NGAL levels and recovery of the serum creatinine and blood urea nitrogen levels. To determine the molecular pathways regulated by ATF4 and XBP1, we performed stable knockout of both transcription factors using CRISPR-Cas9 and RNA sequencing. The pathways triggered under ER stress were mainly XBP1-dependent, associated with an adaptive UPR, and partially regulated by JQ1. Meanwhile, treatment with JQ1 downmodulated most of the pathways regulated by ATF4 and related to the pathological processes during exacerbated UPR activation. Thus, BRD4 inhibition could be useful for curbing the maladaptive UPR activation mechanisms, thereby ameliorating the progression of renal disease.


Assuntos
Antineoplásicos , Traumatismo por Reperfusão , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , Antineoplásicos/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
11.
Int J Nanomedicine ; 19: 2285-2299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482520

RESUMO

Purpose: Ischemic stroke is a high-incidence disease that threatens human well-being. The potent neuroprotective effects render reactive oxygen species (ROS) scavengers potential agents for acute ischemic stroke therapy. Challenges such as inadequate permeability across the blood-brain barrier (BBB), limited half-life, and adverse effects hinder the widespread utilization of small molecule and inorganic ROS scavengers. Thus, there is an urgent demand for efficacious neuroprotective agents targeting ischemic stroke. Our study discovered the superoxide dismutase (SOD)-mimetic activity of recombinant human heavy chain ferritin (rHF) nanoparticles expressed from Escherichia coli (E. coli). Subsequent investigations delved into the ROS-scavenging proficiency of rHF within neural cells, its therapeutic efficacy against ischemic stroke, and the elucidation of its neuroprotective mechanisms. Methods: rHF protein nanoparticles were expressed in E. coli and purified via size-exclusion chromatography. The superoxide anion (•O2-) scavenging SOD-mimetic activity of rHF nanoparticles was measured using a SOD detection kit. The ROS scavenging ability and protection effects against oxidative damage of rHF nanoparticles were studied in H2O2-induced PC12 cells. Therapeutic effects and neuroprotective mechanisms of rHF against ischemic stroke were investigated with transient middle cerebral artery occlusion (MCAO) reperfusion mice model. Results: rHF nanoparticles can eliminate excessive ROS in nerve cells and alleviate oxidative damage. The results of animal experiments demonstrated that rHF nanoparticles passed across BBB, reduced infarct areas in brain tissue, and lowered the neurological deficit score of ischemia-reperfusion model mice. Additionally, rHF nanoparticles mitigated neuronal apoptosis and ferroptosis, suppressed microglial activation, maintained oxygen homeostasis, and exhibited negligible organ toxicity. Conclusion: rHF nanoparticle could be developed as a new ROS scavenger for nerve cells and has therapeutic potential as a drug for cerebral ischemia-reperfusion injury.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Nanopartículas , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Escherichia coli/metabolismo , Peróxido de Hidrogênio , Infarto da Artéria Cerebral Média/tratamento farmacológico , Superóxido Dismutase , Nanopartículas/química , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico
12.
Int J Nanomedicine ; 19: 2265-2284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476273

RESUMO

Introduction: Glaucoma is a prevalent cause of irreversible vision impairment, characterized by progressive retinal ganglion cells (RGCs) loss, with no currently available effective treatment. Rapamycin (RAPA), an autophagy inducer, has been reported to treat glaucoma in rodent models by promoting RGC survival, but its limited water solubility, systemic toxicity, and pre-treatment requirements hinder its potential clinical applications. Methods: Chitosan (CS)-RAPA carbon dot (CRCD) was synthesized via hydrothermal carbonization of CS and RAPA and characterized by transmission electron microscopy, Fourier transform infrared spectra, and proton nuclear magnetic resonance. In vitro assays on human umbilical cord vein endothelial and rat retinal cell line examined its biocompatibility and anti-oxidative capabilities, while lipopolysaccharide-stimulated murine microglia (BV2) assays measured its effects on microglial polarization. In vivo, using a mouse retinal ischemia/reperfusion (I/R) model by acute intraocular pressure elevation, the effects of CRCD on visual function, RGC apoptosis, oxidative stress, and M2 microglial polarization were examined. Results: CRCD exhibited good water solubility and anti-oxidative capabilities, in the form of free radical scavenging. In vitro, CRCD was bio-compatible and lowered oxidative stress, which was also found in vivo in the retinal I/R model. Additionally, both in vitro with lipopolysaccharide-stimulated BV2 cells and in vivo with the I/R model, CRCD was able to promote M2 microglial polarization by activating autophagy, which, in turn, down-regulated pro-inflammatory cytokines, such as IL-1ß and TNF-α, as well as up-regulated anti-inflammatory cytokines, such as IL-4 and TGF-ß. All these anti-oxidative and anti-inflammatory effects ultimately aided in preserving RGCs, and subsequently, improved visual function. Discussion: CRCD could serve as a potential novel treatment strategy for glaucoma, via incorporating RAPA into CDs, in turn not only mitigating its toxic side effects but also enhancing its therapeutic efficacy.


Assuntos
Quitosana , Glaucoma , Traumatismo por Reperfusão , Ratos , Animais , Camundongos , Humanos , Microglia/patologia , Quitosana/farmacologia , Sirolimo/farmacologia , Carbono/farmacologia , Lipopolissacarídeos/farmacologia , Glaucoma/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Autofagia , Citocinas/metabolismo , Água , Traumatismo por Reperfusão/tratamento farmacológico
13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 222-228, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38512032

RESUMO

Objective To investigate the effects of triptolide (TP) on microglial M1/M2 polarization after cerebral ischemia-reperfusion (I/R) injury in rats and the underlying molecular mechanism. Methods A rat model of middle cerebral artery occlusion (MCAO) was established. TP was administered to rats at doses of 0.1 and 0.2 mg/kg, with a sham surgery group as the control group. Longa scoring was performed to grade neurological deficits in rats; HE staining was used to observe the morphology of neurons in ischemic brain tissues; neuron-specific nuclear protein (NeuN) immunofluorescence staining was used to measure the number of neurons; and Western blot analysis was used to measure the expression levels of ionised calcium-binding adaptor molecule-1 (Iba1), inducible nitric oxide synthase (iNOS), arginase 1 (Arg1), Toll-like receptor 4 (TLR4), nuclear factor κB (NF-κB), NeuN and caspase-3 in ischemic-brain tissues. The protein levels of interleukin 1ß (IL-1ß) and IL-10 were measured by ELISA. Immunofluorescence double labelling was performed to detect the expression of Arg1 and TLR4 in microglia. Results Compared with the model group, the neurological score of the TP treatment group was significantly reduced and the neuronal damage was significantly alleviated. IL-1ß levels decreased while IL-10 levels increased. The expression levels of iNOS, TLR4, NF-κB and caspase-3 decreased, while the expression levels of Arg1 and NeuN increased. Conclusion TP treatment ameliorates cerebral I/R injury in rats, which may be attributed to the promotion of microglial M2 polarization, thereby reducing the release of inflammatory factors and inhibiting apoptosis.


Assuntos
Isquemia Encefálica , Diterpenos , Fenantrenos , Traumatismo por Reperfusão , Animais , Ratos , Caspase 3 , Interleucina-10 , Microglia , Receptor 4 Toll-Like , NF-kappa B , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Interleucina-1beta , Isquemia Encefálica/tratamento farmacológico , Compostos de Epóxi
14.
Biol Direct ; 19(1): 23, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500127

RESUMO

BACKGROUND: This study seeks to investigate the impacts of Lactobacillus reuteri (L. reuteri) on hepatic ischemia-reperfusion (I/R) injury and uncover the mechanisms involved. METHODS: Mice in the I/R groups were orally administered low and high doses of L.reuteri (L.reuteri-low and L. reuteri-hi; 1 × 1010 CFU/d and 1 × 1011 CFU/d), for 4 weeks prior to surgery. Following this, mice in the model group were treated with an Nrf2 inhibitor (ML-385), palmitoylcarnitine, or a combination of both. RESULTS: After treatment with L. reuteri, mice exhibited reduced levels of serum aminotransferase (ALT), aspartate aminotransferase (AST), and myeloperoxidase (MPO) activity, as well as a lower Suzuki score and apoptosis rate. L. reuteri effectively reversed the I/R-induced decrease in Bcl2 expression, and the significant increases in the levels of Bax, cleaved-Caspase3, p-p65/p65, p-IκB/IκB, p-p38/p38, p-JNK/JNK, and p-ERK/ERK. Furthermore, the administration of L. reuteri markedly reduced the inflammatory response and oxidative stress triggered by I/R. This treatment also facilitated the activation of the Nrf2/HO-1 pathway. L. reuteri effectively counteracted the decrease in levels of beneficial gut microbiota species (such as Blautia, Lachnospiraceae NK4A136, and Muribaculum) and metabolites (including palmitoylcarnitine) induced by I/R. Likewise, the introduction of exogenous palmitoylcarnitine demonstrated a beneficial impact in mitigating hepatic injury induced by I/R. However, when ML-385 was administered prior to palmitoylcarnitine treatment, the previously observed effects were reversed. CONCLUSION: L. reuteri exerts protective effects against I/R-induced hepatic injury, and its mechanism may be related to the promotion of probiotic enrichment, differential metabolite homeostasis, and the Nrf2/HO-1 pathway, laying the foundation for future clinical applications.


Assuntos
Microbioma Gastrointestinal , Limosilactobacillus reuteri , Traumatismo por Reperfusão , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/uso terapêutico , Palmitoilcarnitina/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia
15.
Brain Res ; 1829: 148845, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452845

RESUMO

Formononetin has been demonstrated to protect against cerebral ischemia-reperfusion injury, however its mechanism has to be further researched. This study examined the effect of formononetin on cerebral ischemia-reperfusion injury in rats using the PARP-1/PARG/Iduna signaling pathway. In male SD rats, a model of cerebral ischemia-reperfusion injury was developed. Animals were randomly assigned to one of eight groups: Sham operation, Sham operation + formononetin, MCAO, MCAO + formononetin, PARP inhibitor (PJ34) + MCAO, formononetin + PJ34 + MCAO, PARG inhibitor (Ethacridine lactate) + MCAO, and ethacridine lactate + formononetin. The neurological deficit test, TTC staining, HE staining, Nissl staining, TUNEL staining, and western blotting were utilized to assess formononetin's protective effects in MCAO rats. The data show that formononetin can effectively alleviate neurological dysfunction and pathological changes in brain tissue in rats with cerebral ischemia-reperfusion injury, reduce the area of cerebral infarction and neuronal apoptosis, decrease the protein levels of PARP-1, PARG, Caspase-3, P53, and AIF in brain tissue, and increase the protein levels of Iduna and p-AKT. As a result, we concluded that formononetin improves brain ischemia-reperfusion injury in rats by modulating the PARP-1/PARG/Iduna signaling pathway.


Assuntos
Isquemia Encefálica , Isoflavonas , Fenantrenos , Traumatismo por Reperfusão , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Etacridina/farmacologia , Etacridina/uso terapêutico , Transdução de Sinais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo
16.
Acta Neurochir (Wien) ; 166(1): 137, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485848

RESUMO

BACKGROUND: Several neurovascular procedures require temporary occlusion of cerebral arteries, leading to ischemia of unpredictable length, occasionally causing brain infarction. Experimental models of cerebral ischemia-reperfusion injury have established that platelet adhesion and coagulation play detrimental roles in reperfusion injury following transient cerebral ischemia. Therefore, in a model of cerebral ischemia-reperfusion injury (IRI), we investigated the therapeutic potential of a dual antiplatelet and anticoagulant (APAC) heparin proteoglycan mimetic which is able to bind to vascular injury sites. METHODS: Brain ischemia was induced in mice by transient occlusion of the right middle cerebral artery for 60 min. APAC, unfractionated heparin (UFH) (both at heparin equivalent doses of 0.5 mg/kg), or vehicle was intravenously administered 10 min before or 60 min after the start of ischemia. At 24 h later, mice were scored for their neurological and motor behavior, and brain damage was quantified. RESULTS: Both APAC and UFH administered before the onset of ischemia reduced brain injury. APAC and UFH pretreated mice had better neurological and motor functions (p < 0.05 and p < 0.01, respectively) and had significantly reduced cerebral infarct sizes (p < 0.01 and p < 0.001, respectively) at 24 h after transient occlusion compared with vehicle-treated mice. Importantly, no macroscopic bleeding complications were observed in either APAC- or UFH-treated animals. However, when APAC or UFH was administered 60 min after the start of ischemia, the therapeutic effect was lost, but without hemorrhaging either. CONCLUSIONS: Pretreatment with APAC or UFH was safe and effective in reducing brain injury in a model of cerebral ischemia induced by transient middle cerebral artery occlusion. Further studies on the use of APAC to limit ischemic injury during temporary occlusion in neurovascular procedures are indicated.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Traumatismo por Reperfusão , Camundongos , Animais , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Encéfalo/metabolismo , Heparina/farmacologia , Heparina/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico
17.
Elife ; 122024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488837

RESUMO

Hepatic ischemia/reperfusion injury (HIRI) is a common and inevitable factor leading to poor prognosis in various liver diseases, making the outcomes of current treatments in clinic unsatisfactory. Metformin has been demonstrated to be beneficial to alleviate HIRI in recent studies, however, the underpinning mechanism remains unclear. In this study, we found metformin mitigates HIRI-induced ferroptosis through reshaped gut microbiota in mice, which was confirmed by the results of fecal microbiota transplantation treatment but showed the elimination of the beneficial effects when gut bacteria were depleted using antibiotics. Detailedly, through 16S rRNA and metagenomic sequencing, we identified that the metformin-reshaped microbiota was characterized by the increase of gamma-aminobutyric acid (GABA) producing bacteria. This increase was further confirmed by the elevation of GABA synthesis key enzymes, glutamic acid decarboxylase and putrescine aminotransferase, in gut microbes of metformin-treated mice and healthy volunteers. Furthermore, the benefit of GABA against HIRI-induced ferroptosis was demonstrated in GABA-treated mice. Collectively, our data indicate that metformin can mitigate HIRI-induced ferroptosis by reshaped gut microbiota, with GABA identified as a key metabolite.


Assuntos
Ferroptose , Microbioma Gastrointestinal , Metformina , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Metformina/farmacologia , RNA Ribossômico 16S , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia , Ácido gama-Aminobutírico/farmacologia
18.
J Cell Mol Med ; 28(8): e18246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520223

RESUMO

Here, it was aimed to investigate the effects of intracerebroventricular (ICV) Brain Derived Neurotrophic Factor (BDNF) infusion for 7 days following cerebral ischemia (CI) on autophagy in neurons in the penumbra. Focal CI was created by the occlusion of the right middle cerebral artery. A total of 60 rats were used and divided into 4 groups as Control, Sham CI, CI and CI + BDNF. During the 7-day reperfusion period, aCSF (vehicle) was infused to Sham CI and CI groups, and BDNF infusion was administered to the CI + BDNF group via an osmotic minipump. By the end of the 7th day of reperfusion, Beclin-1, LC3, p62 and cleaved caspase-3 protein levels in the penumbra area were evaluated using Western blot and immunofluorescence. BDNF treatment for 7 days reduced the infarct area after CI, induced the autophagic proteins Beclin-1, LC3 and p62 and suppressed the apoptotic protein cleaved caspase-3. Furthermore, rotarod and adhesive removal test times of BDNF treatment started to improve from the 4th day, and the neurological deficit score from the 5th day. ICV BDNF treatment following CI reduced the infarct area by inducing autophagic proteins Beclin-1, LC3 and p62 and inhibiting the apoptotic caspase-3 protein while its beneficial effects were apparent in neurological tests from the 4th day.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos Sprague-Dawley , Caspase 3 , Proteína Beclina-1 , Isquemia Encefálica/metabolismo , Apoptose , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Autofagia , Infarto , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico
19.
J Physiol ; 602(8): 1835-1852, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38529522

RESUMO

Acute kidney injury (AKI) often triggers physiological processes aimed at restoring renal function and architecture. However, this response can become maladaptive, leading to nephron loss and fibrosis. Although the therapeutic effects of resveratrol (RSV) are well established, its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. This study assessed whether transient administration of RSV following ischaemia-reperfusion injury (IRI) could prevent the progression to CKD. Forty-one male Wistar rats were assigned randomly to sham surgery, bilateral renal ischaemia for 30 min (IR) or IR+RSV. The RSV treatment commenced 24 h after IRI and continued for 10 days. The rats were studied for either 10 days or 5 months, after which kidney function and structure were evaluated. Mitochondrial homeostasis, oxidant defence and renal inflammation state were also evaluated. Despite having the same severity of AKI, rats receiving RSV for 10 days after IRI exhibited significant improvement in kidney histological injury and reduced inflammation, although renal haemodynamic recovery was less pronounced. Resveratrol effectively prevented the elevation of tubular injury-related molecules and profibrotic signalling with reduced myofibroblast proliferation. Furthermore, RSV substantially improved the antioxidant response and mitochondrial homeostasis. After 5 months, RSV prevented the transition to CKD, as evidenced by the prevention of progressive proteinuria, renal dysfunction and tubulointerstitial fibrosis. This study demonstrates that a brief treatment with RSV following IRI is enough to prevent maladaptive repair and the development of CKD. Our findings highlight the importance of the early days of reperfusion, indicating that maladaptive responses can be reduced effectively following severe AKI. KEY POINTS: Physiological processes activated after acute kidney injury (AKI) can lead to maladaptive responses, causing nephron loss and fibrosis. Prophylactic renoprotection with resveratrol (RSV) has been described in experimental AKI, but its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. In this study, we found that histological tubular injury persists 10 days after ischaemia-reperfusion injury and contributes to a failed repair phenotype in proximal tubular cells. Short-term RSV intervention influenced the post-ischaemic repair response and accelerated tubular recovery by reducing oxidative stress and mitochondrial damage. Furthermore, RSV targeted inflammation and profibrotic signalling during the maladaptive response, normalizing both processes. Resveratrol effectively prevented AKI-to-CKD transition even 5 months after the intervention. The study serves as a proof of concept, proposing RSV as a valuable candidate for further translational clinical studies to mitigate AKI-to-CKD transition.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Ratos Wistar , Rim/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Inflamação/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/complicações , Fibrose
20.
Nanomedicine (Lond) ; 19(9): 811-835, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38445614

RESUMO

Ischemic stroke, prevalent among the elderly, necessitates attention to reperfusion injury post treatment. Limited drug access to the brain, owing to the blood-brain barrier, restricts clinical applications. Identifying efficient drug carriers capable of penetrating this barrier is crucial. Blood-brain barrier transporters play a vital role in nutrient transport to the brain. Recently, nanoparticles emerged as drug carriers, enhancing drug permeability via surface-modified ligands. This article introduces the blood-brain barrier structure, elucidates reperfusion injury pathogenesis, compiles ischemic stroke treatment drugs, explores nanomaterials for drug encapsulation and emphasizes their advantages over conventional drugs. Utilizing nanoparticles as drug-delivery systems offers targeting and efficiency benefits absent in traditional drugs. The prospects for nanomedicine in stroke treatment are promising.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Nanopartículas , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Idoso , Isquemia Encefálica/tratamento farmacológico , Nanomedicina , Acidente Vascular Cerebral/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Traumatismo por Reperfusão/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...